Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation.

نویسندگان

  • Noriyuki Nagahara
  • Taro Yoshii
  • Yasuko Abe
  • Tomohiro Matsumura
چکیده

Rat 3-mercaptopyruvate sulfurtransferase (MST) contains three exposed cysteines as follows: a catalytic site cysteine, Cys(247), in the active site and Cys(154) and Cys(263) on the surface of MST. The corresponding cysteine to Cys(263) is conserved in mammalian MSTs, and Cys(154) is a unique cysteine. MST has monomer-dimer equilibrium with the assistance of oxidants and reductants. The monomer to dimer ratio is maintained at approximately 92:8 in 0.2 m potassium phosphate buffer containing no reductants under air-saturated conditions; the dimer might be symmetrical via an intersubunit disulfide bond between Cys(154) and Cys(154) and between Cys(263) and Cys(263), or asymmetrical via an intersubunit disulfide bond between Cys(154) and Cys(263). Escherichia coli reduced thioredoxin (Trx) cleaved the intersubunit disulfide bond to activate MST to 2.3- and 4.9-fold the levels of activation of dithiothreitol (DTT)-treated and DTT-untreated MST, respectively. Rat Trx also activated MST. On the other hand, reduced glutathione did not affect MST activity. E. coli C35S Trx, in which Cys(35) was replaced with Ser, formed some adducts with MST and activated MST after treatment with DTT. Thus, Cys(32) of E. coli Trx reacted with the redox-active cysteines, Cys(154) and Cys(263), by forming an intersubunit disulfide bond and a sulfenyl Cys(247). A consecutively formed disulfide bond between Trx and MST must be cleaved for the activation. E. coli C32S Trx, however, did not activate MST. Reduced Trx turns on a redox switch for the enzymatic activation of MST, which contributes to the maintenance of cellular redox homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thioredoxin-dependent Redox-sensing Molecular Switches in Hydrogen Sulfide and/or Polysulfides Producing Enzyme, 3-Mercaptopyruvate Sulfurtransferase

The rat 3-mercaptopyruvate sulfurtransferase (MST), a multifunctional enzyme, has redox-sensing molecular switches, a catalytic Cys247 and two cysteines, Cys154 and Cys263, on the outer surface of the enzyme. These switches are reduced or oxidized according to the redox state of their surrounding environment and require a redox active cysteine in thioredoxin (Trx) to interact with MST. Recently...

متن کامل

Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase.

Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In...

متن کامل

The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide.

Trichomonas vaginalis is a protozoan parasite of humans that is able to synthesize cysteine de novo using cysteine synthase but does not produce glutathione. In this study, high pressure liquid chromatography analysis confirmed that cysteine is the major intracellular redox buffer by showing that T. vaginalis contains high levels of cysteine ( approximately 600 mum) comprising more than 70% of ...

متن کامل

Catalytic Site Cysteines of Thiol Enzyme: Sulfurtransferases

Thiol enzymes have single- or double-catalytic site cysteine residues and are redox active. Oxidoreductases and isomerases contain double-catalytic site cysteine residues, which are oxidized to a disulfide via a sulfenyl intermediate and reduced to a thiol or a thiolate. The redox changes of these enzymes are involved in their catalytic processes. On the other hand, transferases, and also some ...

متن کامل

Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast.

A redox reaction involving cysteine thiol-disulfide exchange is crucial for the intracellular monitoring of oxidation status. The yeast transcription factor Yap1 is activated by formation of a disulfide bond, which inhibits nuclear export in response to peroxide stress, with resultant enhancement of the nuclear localization of Yap1. A glutathione peroxidase-like protein, Gpx3, which has peroxir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 3  شماره 

صفحات  -

تاریخ انتشار 2007